On Some Tractable Cases of Logical Filtering
نویسندگان
چکیده
Filtering denotes any method whereby an agent updates its belief state—its knowledge of the state of the world—from a sequence of actions and observations. In logical filtering, the belief state is a logical formula describing the possible world states. Efficient algorithms for logical filtering bear important implications on reasoning tasks such as planning and diagnosis. In this paper, we will identify classes of transition constraints that are amenable to compact and indefinite filtering—presenting efficient algorithms wherever necessary. We will first show that connected row-convex (CRC) constraints are amenable to efficient filtering when path-consistency is enforced in appropriate steps. We will then extend this theory to provide a filtering algorithm based on repeatedly enforcing path-consistency and embedding the domain values of the related variables in tree structures to guarantee global consistency. Finally, we will identify and comment on the problem of multi-agent localization as a potential application of the theory developed in the paper (under some reasonable assumptions).
منابع مشابه
Logical Circuit Filtering
Logical Filtering is the problem of tracking the possible states of a world (belief state) after a sequence of actions and observations. It is fundamental to applications in partially observable dynamic domains. This paper presents the first exact logical filtering algorithm that is tractable for all deterministic domains. Our tractability result is interesting because it contrasts sharply with...
متن کاملQuery rewriting with filtering constraints
A database may contain inaccurate information. When querying such a database, one may want to impose filtering constraints so that only answers produced from reasonable subsets of the data are presented. We call the problem of producing these answers with respect to a set of filtering constraints the Reasonable Query Answers (RQA) problem. The general problem is NP-Hard in data-complexity, but ...
متن کاملQoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering
Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملAdaptive-Filtering-Based Algorithm for Impulsive Noise Cancellation from ECG Signal
Suppression of noise and artifacts is a necessary step in biomedical data processing. Adaptive filtering is known as useful method to overcome this problem. Among various contaminants, there are some situations such as electrical activities of muscles contribute to impulsive noise. This paper deals with modeling real-life muscle noise with α-stable probability distribution and adaptive filterin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006